HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats.

نویسندگان

  • Bin Zhang
  • Eric J West
  • Ken C Van
  • Gene G Gurkoff
  • Jia Zhou
  • Xiu-Mei Zhang
  • Alan P Kozikowski
  • Bruce G Lyeth
چکیده

Traumatic brain injury (TBI) produces a rapid and robust inflammatory response in the brain characterized in part by activation of microglia. A novel histone deacetylase (HDAC) inhibitor, 4-dimethylamino-N-[5-(2-mercaptoacetylamino)pentyl]benzamide (DMA-PB), was administered (0, 0.25, 2.5, 25 mg/kg) systemically immediately after lateral fluid percussion TBI in rats. Hippocampal CA2/3 tissue was processed for acetyl-histone H3 immunolocalization, OX-42 immunolocalization (for microglia), and Fluoro-Jade B histofluorescence (for degenerating neurons) at 24 h after injury. Vehicle-treated TBI rats exhibited a significant reduction in acetyl-histone H3 immunostaining in the ipsilateral CA2/3 hippocampus compared to the sham TBI group (p<0.05). The reduction in acetyl-histone H3 immunostaining was attenuated by each of the DMA-PB dosage treatment groups. Vehicle-treated TBI rats exhibited a high density of phagocytic microglia in the ipsilateral CA2/3 hippocampus compared to sham TBI in which none were observed. All doses of DMA-PB significantly reduced the density of phagocytic microglia (p<0.05). There was a trend for DMA-PB to reduce the number of degenerating neurons in the ipsilateral CA2/3 hippocampus (p=0.076). We conclude that the HDAC inhibitor DMA-PB is a potential novel therapeutic for inhibiting neuroinflammation associated with TBI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Inhibition of Histone Deacetylase by Butyrate Protects Rat Liver from Ischemic Reperfusion Injury

We showed previously that pretreatment of butyrate, which is an endogenous histone deacetylase (HDAC) inhibitor normally fermented from undigested fiber by intestinal microflora, seriously alleviated ischemia reperfusion (I/R)-induced liver injury by inhibiting the nuclear factor κB (NF-κB) pathway. The goal of this study was to investigate the effect of butyrate administrated at the onset of i...

متن کامل

P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation

Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...

متن کامل

The Effects of Cyclooxygenase Inhibitors on the Brain Inflammatory Response Following Traumatic Brain Injury in Rats

Objective(s) Cytokines such as IL-1β are involved in inflammatory responses. This study evaluated the role of two different kinds of drugs (ibuprofen and celecoxib) on brain IL-10 and IL-1β after traumatic brain injury (TBI) in male rats. Materials and Methods Rats were assigned into 6 groups: intact, sham, TBI, and treated rats with vehicle, celecoxib or iboprophen. Cytokine concentrations ...

متن کامل

Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats

BACKGROUND Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1226  شماره 

صفحات  -

تاریخ انتشار 2008